Приложение 1

к основной общеобразовательной программе среднего общего образования, приказ N 15 от 5 августа 2019 г.

Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №2 им. Героя Советского Союза А.П. Иванова» Лужского муниципального района Ленинградской области

Рассмотрена и рекомендована к утверждению на заседании методического объединения учителей географии, физики, химии, биологии, естествознания, астрономии протокол № 1 от 30 августа 2019 г.

Утверждена приказом по школе № 19 от 31 августа 2019 г.

Рабочая программа по биологии ФГОС СОО 10-11 классы углублённый уровень срок реализации 2 года

Рабочая программа составлена на основе Примерной программы среднего общего образования (углублённый уровень) и программы среднего общего образования по биологии для 10-11 классов (углублённый уровень) авторов В.К. Шумного, Г.М. Дымшица.- М.: «Просвещение», 2018.

Разработчик программы:

Иванов А.В. – учитель биологии высшей квалификационной категории

1. Планируемые результаты изучения учебного предмета

Личностные результаты:

реализация этических установок по отношению к биологическим открытиям, исследованиям и их результатам;

признание высокой ценности жизни во всех её проявлениях, здоровья своего и других людей, реализации установок здорового образа жизни;

сформированность познавательных мотивов, направленных на получение нового знания в области биологии в связи с будущей профессиональной деятельностью или бытовыми проблемами, связанными с сохранением собственного здоровья и экологической безопасности.

Метапредметные результаты:

овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы, давать определения понятиям, классифицировать, наблюдать, проводить эксперименты, делать выводы и заключения, структурировать материал, объяснять, доказывать, защищать свои идеи;

умения работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научнопопулярной литературе, биологических словарях и справочниках), анализировать и
оценивать информацию, преобразовывать информацию из одной формы в другую;
способность выбирать целевые и смысловые установки в своих действиях и
поступках по отношению к живой природе, своему здоровью и здоровью
окружающих;

умения адекватно использовать речевые средства для дискуссии и аргументации своей позиции, сравнивать разные точки зрения, аргументировать свою точку зрения, отстаивать свою позицию.

Предметные результаты:

1. В познавательной (интеллектуальной) сфере:

характеристика содержания биологических теорий (клеточная, эволюционная теория Дарвина); учения Вернадского о биосфере; законов Менделя, закономерностей изменчивости; вклада выдающихся учёных в развитие биологической науки;

выделение существенных признаков биологических объектов (клеток: растительных и животных, доядерных и ядерных, половых и соматических; организмов: одноклеточных и многоклеточных; видов, экосистем, биосферы) и процессов (обмен веществ, размножение, деление клетки, оплодотворение, искусственного действие естественного отборов, формирование приспособленности, образование видов, круговорот веществ и превращения энергии в экосистемах и биосфере);

объяснение роли биологии в формировании научного мировоззрения; вклада биологических теорий в формирование современной естественно-научной картины мира; отрицательного влияния алкоголя, никотина, наркотических веществ на развитие человека; влияния мутагенов на организм человека, экологических факторов на организмы; причин эволюции, изменяемости видов, нарушений развития организмов, наследственных заболеваний, мутаций, устойчивости и смены экосистем;

приведение доказательств (аргументация) единства живой и неживой природы, родства живых организмов; взаимосвязей организмов и окружающей среды; необходимости сохранения многообразия видов;

умение пользоваться биологической терминологией и символикой;

решение элементарных биологических задач; составление элементарных схем скрещивания и схем переноса веществ и энергии в экосистемах (цепи питания); описание особей видов по морфологическому критерию;

выявление изменчивости, приспособлений организмов к среде обитания, источников мутагенов в окружающей среде (косвенно), антропогенных изменений в экосистемах своей местности; изменений в экосистемах на биологических моделях;

сравнение биологических объектов (химический состав тел живой и неживой природы, зародыша человека и других млекопитающих, природные экосистемы и агроэкосистемы своей местности), процессов (естественный и искусственный отборы, половое и бесполое размножение) и формулировка выводов на основе сравнения.

2. В ценностно-ориентационной сфере:

анализ и оценка различных гипотез сущности жизни, происхождение человека и возникновение жизни, глобальных экологических проблем и путей их решения, последствий собственной деятельности в окружающей среде; биологической информации, получаемой из разных источников;

оценка этических аспектов некоторых исследований в области биотехнологии (клонирование, искусственное оплодотворение, направленное изменение генома).

3.В сфере трудовой деятельности:

овладение умениями и навыками постановки биологических экспериментов и объяснения их результатов.

4.В сфере физической деятельности:

обоснование и соблюдение мер профилактики вирусных заболеваний, вредных привычек (курение, употребление алкоголя, наркомания); правил поведения в окружающей среде.

Выпускник на углублённом уровне научится:

оценивать роль биологических открытий и современных исследований в развитии науки и в практической деятельности людей;

оценивать роль биологии в формировании современной научной картины мира, прогнозировать перспективы развития биологии;

устанавливать и характеризовать связь основополагающих биологических понятий (клетка, организм, вид, экосистема, биосфера) с основополагающими понятиями других естественных наук;

обосновывать систему взглядов на живую природу и место в ней человека, применяя биологические теории, учения, законы, закономерности, понимать границы их применимости;

проводить учебно-исследовательскую деятельность по биологии: выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов;

выявлять и обосновывать существенные особенности разных уровней организации жизни;

устанавливать связь строения и функций основных биологических макромолекул, их роль в процессах клеточного метаболизма;

решать задачи на определение последовательности нуклеотидов ДНК и мРНК, антикодонов тРНК, последовательности аминокислот в молекуле белка, применяя знания о реакциях матричного синтеза, генетическом коде, принципе комплементарности;

делать выводы об изменениях, которые произойдут в процессах матричного синтеза, в случае изменения последовательности нуклеотидов ДНК;

сравнивать фазы деления клетки; решать задачи на определение и сравнение количества генетического материала (хромосом и ДНК) в клетках многоклеточных организмов в разных фазах клеточного цикла;

выявлять существенные признаки строения клеток организмов разных царств живой природы, устанавливать взаимосвязь строения и функций частей и органоидов клетки;

обосновывать взаимосвязь пластического и энергетического обменов; сравнивать процессы пластического и энергетического обменов, происходящих в клетках живых организмов;

определять количество хромосом в клетках растений основных отделов на разных этапах жизненного цикла;

сравнивать разные способы размножения организмов;

характеризовать основные этапы онтогенеза организмов;

решать генетические задачи на дигибридное скрещивание, сцепленное (в том числе, сцепленное с полом) наследование, анализирующее скрещивание, применяя законы наследственности и закономерности сцепленного наследования;

раскрывать причины наследственных заболеваний, аргументировать необходимость мер предупреждения таких заболеваний;

выявлять причины и существенные признаки модификационной и мутационной изменчивости; обосновывать роль изменчивости в естественном и искусственном отборе;

обосновывать значение разных методов селекции в создании сортов растений, пород животных и штаммов микроорганизмов;

характеризовать факторы (движущие силы) эволюции;

характеризовать причины изменчивости и многообразия видов согласно синтетической теории эволюции;

характеризовать популяцию как единицу эволюции, вид как систематическую категорию и как результат эволюции;

устанавливать связь структуры и свойств экосистемы;

составлять схемы переноса веществ и энергии в экосистеме (сети питания), прогнозировать их изменения в зависимости от изменения факторов среды;

аргументировать собственную позицию по отношению к экологическим проблемам и поведению в природной среде;

обосновывать необходимость устойчивого развития как условия сохранения биосферы;

оценивать практическое и этическое значение современных исследований в биологии, медицине, экологии, биотехнологии; обосновывать собственную оценку; выявлять в тексте биологического содержания проблему и аргументированно её объяснять;

представлять биологическую информацию в виде текста, таблицы, схемы, графика, диаграммы и делать выводы на основании представленных данных; преобразовывать график, таблицу, диаграмму, схему в текст биологического содержания.

Выпускник на углублённом уровне получит возможность научиться:

организовывать и проводить индивидуальную исследовательскую деятельность по биологии (или разрабатывать индивидуальный проект): выдвигать гипотезы, планировать работу, отбирать и преобразовывать необходимую информацию, проводить эксперименты, интерпретировать результаты, делать выводы на основе полученных результатов, представлять продукт своих исследований;

прогнозировать последствия собственных исследований с учётом этических норм и экологических требований;

выделять существенные особенности жизненных циклов представителей разных отделов растений и типов животных; изображать циклы развития в виде схем;

анализировать и использовать в решении учебных и исследовательских задач информацию о современных исследованиях в биологии, медицине и экологии;

аргументировать необходимость синтеза естественно-научного и социогуманитарного знания в эпоху информационной цивилизации;

моделировать изменение экосистем под влиянием различных групп факторов окружающей среды;

выявлять в процессе исследовательской деятельности последствия антропогенного воздействия на экосистемы своего региона, предлагать способы снижения антропогенного воздействия на экосистемы;

использовать приобретённые компетенции в практической деятельности и повседневной жизни, для приобретения опыта деятельности, предшествующей профессиональной, в основе которой лежит биология как учебный предмет.

2. Содержание учебного предмета 10 класс

Введение. Живое и жизнь.

Биология как наука. Биологические дисциплины, их связи с другими науками. Единство живого. Основные свойства живых организмов. Уровни организации живой материи. Методы познания живой природы.

Демонстрации

Биологические системы

Уровни организации живой природы

Методы познания живой природы

Раздел I. Биологические системы: клетка, организм

Глава I. Молекулы и клетки

Цитология — наука о клетке. История изучения клетки. Клеточная теория. Многообразие форм и размеров клеток в зависимости от их функций. Клетка как целостная система. Прокариоты и эукариоты. Методы изучения клетки.

Химический состав клетки. Макро- и микроэлементы. Роль ионов в клетке и организме. Роль воды. Гидрофильные и гидрофобные молекулы.

Биополимеры. Регулярные и нерегулярные полимеры.

Строение белков. Аминокислоты. Пептидная связь. Уровни организации белковой молекулы. Биологические функции белков.

Углеводы. Моносахариды: рибоза, дезоксирибоза, глюкоза. Дисахариды: сахароза, лактоза. Полисахариды: крахмал, гликоген, целлюлоза, хитин. Функции углеводов.

Липиды. Химическое строение липидов. Насыщенные и ненасыщенные жирные кислоты. Жиры, воски, фосфолипиды. Функции липидов.

Нуклеиновые кислоты. Строение нуклеиновых кислот. Типы нуклеиновых кислот. Функции нуклеиновых кислот.

АТФ, макроэргические связи.

Демонстрации

Схемы и таблицы, иллюстрирующие: элементный состав клетки, строение молекул воды; молекул углеводов, липидов, белков, молекул ДНК, РНК и АТФ; строение клеток животных и растений, прокариотической и эукариотической клеток. Пространственная модель молекулы ДНК.

Глава II. Клеточные структуры и их функции.

Биологические мембраны. Строение и функции плазматической мембраны.

Мембранные органеллы. Ядро. Вакуолярная система клетки. Митохондрии. Пластиды.

Опорно-двигательная система клетки. Рибосомы. Клеточные включения.

Демонстрации

Схемы и таблицы, иллюстрирующие: строение плазматической мембраны, строение клеток животных и растений, прокариотической и эукариотической клеток. Динамическое пособие «Строение клетки».

Глава III. Обеспечение клеток энергией

Обмен веществ и превращения энергии в клетке. Понятия метаболизма, анаболизма, катаболизма.

Источники энергии для живых организмов. Автотрофы и гетеротрофы.

Фиксация энергии солнечного света растениями. Хлорофилл. Строение хлоропласта. Фотосинтез. Световая фаза фотосинтеза. Фотолиз воды. Темновая фаза фотосинтеза. Хемосинтез. Роль хемосинтезирующих бактерий на Земле.

Расщепление полисахаридов — крахмала и гликогена. Анаэробное расщепление глюкозы.

Цикл Кребса. Окислительное фосфорилирование. Роль кислорода. Аэробы и анаэробы.

Демонстрации

Схемы и таблицы, иллюстрирующие: обмен веществ и превращение энергии в клетке; строение хлоропласта; процесс фотосинтеза; строение митохондрии; процесс хемосинтеза.

Глава IV. Наследственная информация и реализация ее в клетке

Белки — основа специфичности клеток и организмов. Генетическая информация. Матричный принцип синтеза белка. Транскрипция.

Генетический код и его свойства.

Транспортные РНК. Биосинтез белка. Регуляция транскрипции и трансляции.

Удвоение ДНК. Принципы репликации. Особенности репликации ДНК эукариот. Теломераза.

Современные представления о строении генов. Геном. Строение хромосом.

Генная инженерия.

Строение вирусов. Размножение вирусов. Вирус иммунодефицита человека. Обратная транскрипция.

Демонстрации

Схемы и таблицы, иллюстрирующие: процесс репликации; генетический код; биосинтез белка; регуляцию транскрипции у прокариот; строение вируса; строение хромосомы. Динамическая модель синтеза белка на рибосоме.

Глава V. Индивидуальное развитие и размножение организмов

Деление клеток про- и эукариот. Жизненный цикл клетки (интерфаза и митоз). Фазы митоза. Гомологичные и негомологичные хромосомы. Амитоз.

Периоды онтогенеза. Развитие зародыша животных. Дифференцировка клеток. Эмбриогенез растений.

Постэмбриональное развитие животных и растений. Апоптоз. Многоклеточный организм как единая система. Стволовые клетки. Регенерация. Взаимодействие клеток в организме. Контроль целостности организма. Иммунитет.

Мейоз. Определение пола у животных. Половое и бесполое размножение. Соматические и половые клетки. Чередование гаплоидной и диплоидной стадий в жизненном цикле. Партеногенез.

Образование половых клеток у животных и растений. Оплодотворение у животных и растений.

Демонстрации

Схемы и таблицы, иллюстрирующие: строение тканей растений и животных; способы бесполого размножения; оплодотворение у растений и животных; стадии развития позвоночного животного; постэмбриональное развитие. Динамические пособия «Деление клетки. Митоз и мейоз», «Гаметогенез у животных».

Раздел II. Основные закономерности наследственности и изменчивости

Глава VI. Основные закономерности явлений наследственности Наследственность — свойство живых организмов. Генетика. Работы Г. Менделя. Гибридологический метод изучения наследственности.

Аллели. Генотип и фенотип. Доминантные и рецессивные признаки. Единообразие гибридов первого поколения. Закон расщепления. Гомозиготы и гетерозиготы.

Дигибридное и полигибридное скрещивания. Закон независимого наследования. Анализирующее скрещивание.

Взаимодействие аллельных генов. Неполное доминирование. Кодоминирование. Взаимодействие неаллельных генов. Полигенные признаки. Статистическая природа генетических закономерностей.

Сцепленное наследование. Кроссинговер. Карты хромосом. Современные методы картирования хромосом.

Наследование, сцепленное с полом. Инактивация X-хромосомы у самок. Признаки, ограниченные полом.

Демонстрации

Схемы и таблицы, иллюстрирующие: моногибридное и дигибридное скрещивания и их цитологические основы; перекрест хромосом; неполное доминирование; сцепленное наследование; взаимодействие генов. Семена гороха с разным фенотипом (гладкие, морщинистые, жёлтые, зеленые). Динамические пособия «Моногибридное скрещивание», «Дигибридное скрещивание».

Глава VII. Основные закономерности явлений изменчивости

Изменчивость — свойство живых организмов. Наследственная и ненаследственная изменчивость. Комбинативная изменчивость.

Мутационная изменчивость. Геномные, хромосомные, генные мутации. Генеративные и соматические мутации. Закон гомологических рядов Н. И. Вавилова.

Внеядерная наследственность. Митохондриальные и хлоропластные гены.

Причины возникновения мутаций. Мутагенные факторы среды. Экспериментальный мутагенез.

Взаимодействие генотипа и среды. Качественные и количественные признаки. Норма реакции признака. Модификационная изменчивость.

Демонстрации

Схемы, таблицы, фотографии и комнатные растения, иллюстрирующие: различные мутации (разные породы собак, частичный альбинизм и необычная форма листьев у комнатных растений, если есть возможность — культуры мутантных линий дрозофилы); механизм хромосомных модификационную изменчивость; центры многообразия происхождения культурных растений. Гербарный материал злаков c гомологической изменчивостью (остистые, безостые, высокие, карликовые растения и другие).

Глава VIII. Генетические основы индивидуального развития

Функционирование генов в ходе индивидуального развития. Детерминация и дифференцировка. Дифференциальная активность генов. Действие генов в эмбриогенезе. Перестройки генома в онтогенезе. Иммуноглобулиновые гены млекопитающих. Мобильные генетические элементы.

Множественное действие генов. Летальные мутации.

Наследование дифференцированного состояния клеток. Химерные и трансгенные организмы. Клонирование.

Генетические основы поведения. Генетические основы способности к обучению. Демонстрации

Схемы и таблицы, иллюстрирующие взаимодействие генов и механизм хромосомных мутаций.

Глава IX. Генетика человека

Методы изучения генетики человека. Близнецы. Кариотип человека и хромосомные болезни. Картирование хромосом человека. Возможности лечения и предупреждения наследственных заболеваний. Медико-генетическое консультирование.

Демонстрации

Схемы и таблицы, иллюстрирующие исследования в области биотехнологии. Динамические пособия «Генетика групп крови», «Наследование резус-фактора».

11 класс

Раздел III. Эволюция органического мира

Глава Х. Возникновение и развитие эволюционной биологии

Возникновение и развитие эволюционных идей. Эволюционная теория Ж. Б. Ламарка. Жизнь и труды Ч. Дарвина. Основные принципы эволюционной теории Дарвина. Формирование синтетической теории эволюции. Работы С. С. Четверикова и И. И. Шмальгаузена. Палеонтологические, биогеографические, сравнительно-анатомические, эмбриологические и молекулярные свидетельства эволюции.

Демонстрации

Схемы, таблицы и фотографии, иллюстрирующие: формы сохранности ископаемых растений и животных; атавизмы и рудименты; аналогичные и гомологичные органы; доказательства эволюции органического мира. Палеонтологические коллекции.

Глава XI. Механизмы эволюции

Популяция — элементарная единица эволюции. Внутривидовая изменчивость. Генетическая структура популяций. Уравнение и закон Харди — Вайнберга. Мутации как источник генетической изменчивости популяций. Случайные процессы в популяциях.

Дрейф генов. Популяционные волны. Борьба за существование. Естественный отбор — направляющий фактор эволюции. Формы естественного отбора. Половой отбор. Адаптация — результат естественного отбора. Миграции как фактор эволюции.

Понятие вида. Критерии вида. Пути видообразования. Аллопатрическое и симпатрическое видообразование.

Микро- и макроэволюция. Генетические и онтогенетические основы эволюции. Направления эволюции. Ароморфоз, идиоадаптация и общая дегенерация. Дивергенция, конвергенция и параллелизм. Биологический прогресс. Единое древо жизни — результат эволюции.

Демонстрации

Схемы, таблицы и фотографии, иллюстрирующие: движущие силы эволюции; стабилизирующий отбор; возникновение многообразие приспособлений у организмов (кактусов, орхидей, морских млекопитающих т. д.); образование новых видов в природе; географическое И экологическое видообразование; формы эволюции — дивергенцию, конвергенцию, параллелизм; эволюции ароморфоз, идиоадаптацию, дегенерацию; ароморфозы в эволюции растений и животных; эволюцию растительного и животного мира.

Глава XII. Возникновение и развитие жизни на Земле

Сущность жизни. Определения живого. Гипотезы возникновения жизни. Опыты Ф. Реди и Л. Пастера. Современные представления о возникновении жизни.

Атмосфера древней Земли. Абиогенный синтез органических веществ. Образование и эволюция биополимеров. Роль ДНК и РНК в образовании систем с обратной связью. Образование и эволюция биологических мембран. Образование первичных гетеротрофов.

Изучение истории Земли. Палеонтология. Методы геохронологии. Изменение климата на Земле. Дрейф континентов. Развитие жизни в криптозое. Симбиотическая теория образования эукариот. Вспышка разнообразия животных в конце протерозоя. Развитие органического мира в палеозое. Развитие жизни в мезозое. Развитие жизни в кайнозое.

Демонстрации

Схемы и таблицы, иллюстрирующие флору и фауну позднего протерозоя, палеозоя, мезозоя, кайнозоя (ледниковый период). Ископаемые останки живого – окаменелости, отпечатки (палеонтологическая коллекция).

Глава XIII. Возникновение и развитие человека — антропогенез

Место человека в системе живого мира. Сравнительно-морфологические, этологические, цитогенетические и молекулярно-биологические доказательства родства человека и человекообразных обезьян.

Палеонтологические данные о происхождении и эволюции предков человека. Австралопитеки. Первые представители рода Homo. Неандертальский человек. Место неандертальцев в эволюции человека. Кроманьонцы.

Биологические факторы эволюции человека. Социальные факторы эволюции человека — мышление, речь, орудийная деятельность. Роль социальной среды в формировании человеческих индивидуумов. Соотношение биологических и социальных факторов в эволюции человека.

Человеческие расы. Роль изоляции и дрейфа генов в формировании расовых признаков. Ложность расистских теорий.

Демонстрации

Схемы и таблицы, иллюстрирующие: предшественников человека (австралопитек, неандерталец, кроманьонец); орудия труда человека умелого, неандертальца, кроманьонца (экспозиции Дарвиновского музея). Палеолитическое искусство (репродукции произведений первобытных художников).

Глава XIV. Селекция и биотехнология

Селекция как процесс и как наука. Одомашнивание как первый этап селекции. Центры происхождения культурных растений. Происхождение домашних животных и центры их одомашнивания.

Искусственный отбор. Массовый и индивидуальный отбор.

Явление гетерозиса и его применение в селекции. Использование цитоплазматической мужской стерильности. Полиплоидия и отдаленная гибридизация в селекции растений. Экспериментальный мутагенез и его значение в селекции.

Клеточная инженерия и клеточная селекция. Хромосомная инженерия. Применение генной инженерии в селекции.

Крупномасштабная селекция животных.

Успехи селекции.

Демонстрации

Схемы и таблицы, иллюстрирующие: методы селекции; селекцию растений и животных; успехи селекции; исследования в области биотехнологии.

Раздел IV. Организмы в экологических системах

Глава XV. Организмы и окружающая среда

Взаимоотношения организма и среды. Экологические факторы. Закон толерантности. Приспособленность. Популяция как природная система. Структура популяций. Динамика популяций. Жизненные стратегии. Вид как система популяций. Экологическая ниша. Жизненные формы.

Демонстрации

Схемы и таблицы, иллюстрирующие экологические факторы и их влияние на организмы.

Глава XVI. Сообщества и экосистемы

Сообщество, экосистема, биоценоз. Компоненты экосистемы. Энергетические связи. Трофические сети. Правило экологической пирамиды. Межвидовые и межпопуляционные взаимодействия в экосистемах. Конкуренция, симбиоз, альтруизм.

Пространственная структура сообществ. Динамика экосистем. Стадии развития экосистемы. Сукцессия. Устойчивость экосистем.

Демонстрации

Схемы и таблицы, иллюстрирующие: различные экосистемы; трофические уровни экосистемы; пищевые цепи и сети; экологические пирамиды; межвидовые отношения; круговорот веществ и превращения энергии в экосистеме; сукцессии. Динамические пособия «Типичные биоценозы», «Агроценоз».

Глава XVII. Биосфера

Биосфера. Учение В. И. Вернадского о биосфере. Биомы. Живое вещество и биогеохимические круговороты в биосфере. Биосфера и человек. Глобальные антропогенные изменения в биосфере. Проблема устойчивого развития биосферы.

Демонстрации

Схемы и таблицы, иллюстрирующие: строение биосферы; круговороты углерода, азота, фосфора и кислорода.

Глава XIX. Биологические основы охраны природы

Сохранение и поддержание биологического разнообразия. Причины вымирания видов и популяций. Сохранение генофонда и реинтродукция. Сохранение экосистем. Биологический мониторинг и биоиндикация.

Демонстрации

Схемы и таблицы, иллюстрирующие: биоразнообразие; последствия деятельности человека в окружающей среде; редкие и исчезающие виды. Карта «Заповедники и заказники России». Динамическое пособие «Биосфера и человек».

Примерный перечень лабораторных и практических работ

- 1. Использование различных методов при изучении биологических объектов.
- 2. Техника микроскопирования.
- 3. Изучение клеток растений и животных под микроскопом на готовых микропрепаратах и их описание.
- 4. Приготовление, рассматривание и описание микропрепаратов клеток растений.
- 5. Сравнение строения клеток растений, животных, грибов и бактерий.
- 6. Изучение движения цитоплазмы.
- 7. Изучение плазмолиза и деплазмолиза в клетках кожицы лука.
- 8. Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках.
- 9. Обнаружение белков, углеводов, липидов с помощью качественных реакций.
- 10. Выделение ДНК.
- 11. Изучение каталитической активности ферментов (на примере амилазы или каталазы).
- 12. Наблюдение митоза в клетках кончика корешка лука на готовых микропрепаратах.
- 13. Изучение хромосом на готовых микропрепаратах.
- 14. Изучение стадий мейоза на готовых микропрепаратах.
- 15. Изучение строения половых клеток на готовых микропрепаратах.
- 16. Решение элементарных задач по молекулярной биологии.
- 17. Выявление признаков сходства зародышей человека и других позвоночных животных как доказательство их родства.
- 18. Составление элементарных схем скрещивания.
- 19. Решение генетических задач.

- 20. Изучение результатов моногибридного и дигибридного скрещивания у дрозофилы.
- 21. Составление и анализ родословных человека.
- 22. Изучение изменчивости, построение вариационного ряда и вариационной кривой.
- 23. Описание фенотипа.
- 24. Сравнение видов по морфологическому критерию.
- 25. Описание приспособленности организма и её относительного характера.
- 26. Выявление приспособлений организмов к влиянию различных экологических факторов.
- 27. Сравнение анатомического строения растений разных мест обитания.
- 28. Методы измерения факторов среды обитания.
- 29. Изучение экологических адаптаций человека.
- 30. Составление пищевых цепей.
- 31. Изучение и описание экосистем своей местности.
- 32. Моделирование структур и процессов, происходящих в экосистемах.
- 33. Оценка антропогенных изменений в природе

3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

10 класс

Тема	Количество часов	
Введение в биологию	3	
Раздел І. Биологические системы: клетка, организм		
Глава І. Молекулы и клетки.	26	
Глава II. Клеточные структуры и их функции.	15	
Глава III. Обеспечение клеток энергией	10	
Глава IV. Наследственная информация и реализация её в	15	
клетке		
Глава V. Индивидуальное развитие и размножение	17	
организмов		
Раздел II. Основные закономерности наследственности и изменчивости		
Глава VI. Основные закономерности явлений	13	
наследственности		
Глава VII. Основные закономерности явлений изменчивости	10	
Глава VIII. Генетические основы индивидуального развития	10	
Глава IX. Генетика человека	11	
Повторение курса биологии за 10 класс	6	
итого:	136	

11 класс

Тема	Количество часов	
Раздел III. Эволюция органического мира		
Глава X. Возникновение и развитие эволюционной биологии	11	
Глава XI. Механизмы эволюции	24	
Глава XII. Возникновение и развитие жизни на Земле	10	
Глава XIII. Возникновение и развитие человека –	10	
антропогенез		
Глава XIV. Селекция и биотехнология	9	
Бионика	6	
Раздел IV. Организмы в экологических системах		
Глава XV. Организмы и окружающая среда	20	
Глава XVI. Сообщества и экосистемы	14	
Глава XVII. Биосфера	9	
Глава XVIII. Биологические основы охраны природы	6	
Обобщающее повторение курса биологии	13	
ИТОГО:	132	